A complex Ruelle-Perron-Frobenius theorem and two counterexamples

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Ruelle–Perron–Frobenius Operators. I. Ruelle Theorem

We study Ruelle–Perron–Frobenius operators for locally expanding and mixing dynamical systems on general compact metric spaces associated with potentials satisfying the Dini condition. In this paper, we give a proof of the Ruelle Theorem on Gibbs measures. It is the first part of our research on the subject. The rate of convergence of powers of the operator will be presented in a forthcoming pa...

متن کامل

Ruelle-perron-frobenius Spectrum for Anosov Maps

We extend a number of results from one dimensional dynamics based on spectral properties of the Ruelle-Perron-Frobenius transfer operator to Anosov diffeomorphisms on compact manifolds. This allows to develop a direct operator approach to study ergodic properties of these maps. In particular, we show that it is possible to define Banach spaces on which the transfer operator is quasicompact. (In...

متن کامل

Noncommutative Perron-frobenius-ruelle Theorem, Two Weight Hilbert Transform, and Almost Periodicity

The starting point of our research concerned the problem of Bellisard about almost periodicity of a wide and natural class of Jacobi matrices with singular continuous spectrum, which appear naturally from the complex dynamics constructions. Some particular applications of our results to this problem can be found in [13] or in the last section of the present paper. Let f be an expanding polynomi...

متن کامل

Stochastic Nonlinear Perron-frobenius Theorem∗

We establish a stochastic nonlinear analogue of the PerronFrobenius theorem on eigenvalues and eigenvectors of positive matrices. The result is formulated in terms of an automorphism T of a probability space (Ω,F , P ) and a random mapping D(ω, ·) : R+ → R+. Under assumptions of monotonicity and homogeneity of D(ω, ·), we prove the existence of scalar and vector measurable functions α(ω) > 0 an...

متن کامل

On Ruelle–Perron–Frobenius Operators. II. Convergence Speeds

We study Ruelle operators on expanding and mixing dynamical systems with potential function satisfying the Dini condition. We give an estimate for the convergence speed of the iterates of a Ruelle operator. Our proof avoids Markov partitions. This is the second part of our research on Ruelle operators.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ergodic Theory and Dynamical Systems

سال: 1984

ISSN: 0143-3857,1469-4417

DOI: 10.1017/s0143385700002327